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  ABSTRACT 

Angiogenesis is the process of new blood vessel development by endothelial cells 

from pre-existing vasculature; however, abnormal angiogenesis contributes to the 

pathogenesis of many disorders such as cardiovascular diseases, cancer, and chronic 

inflammation. Angiogenesis in atherosclerotic plaques contributes to their instability and 

therefore increases the risk of plaque rupture and thrombus formation.  Sparstolonin B 

(SsnB) is a novel bioactive compound isolated from Sparganium stoloniferum, an herb 

that has been used historically in the Chinese herbal medicine “SanLeng” as an herbal 

remedy for the treatment of several inflammatory diseases.  In this study, we have 

explored the anti-angiogenic properties of SsnB in vitro. In cell culture, SsnB induced 

rapid changes in the morphology of human umbilical vein endothelial cells (HUVECs). 

After 6 hours, SsnB induced endothelial cell actin stress fibers, increased cell 

perimeter/area ratio, and enhanced formation of focal adhesions. These effects occurred 

in a dose-dependent manner in which the maximum effect was at 100M SsnB. In 

addition, we have also analyzed early response gene expression in response to 100 M 

SsnB. Our data show that SsnB blocked the up-regulation c-Myc and c-Fos, which 

occurred in response to addition of vehicle control (DMSO). These results imply that 

alteration of endothelial cell morphology and change of early response gene regulation 

may play a role in the anti-angiogenic effects induced by SsnB. 
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CHAPTER 1 

INTRODUCTION 

1.1 Atherosclerosis 

Atherosclerotic cardiovascular disease is the first leading cause of morbidity and 

mortality in the United States, where cardiovascular risk assessment accounts for <50% 

of the variability in risk. Approximately 85% of middle-aged susceptible subjects have 

significant coronary atherosclerosis, which remains silent for decades until it finally 

presents with plaque rupture and thrombosis. In fact, myocardial infarction (MI) occurs in 

62% of men and 42% of women with coronary atherosclerosis regardless of race or 

ethnicity (Weintraub et al. 2008). Many risk factors have been determined to be 

associated with progressive atherosclerotic disease, including hypertension, obesity, 

diabetes, smoking, and hyperlipidemia. Hyperlipidemia is defined as an elevation of low-

density lipoprotein (LDL) cholesterol level, which is directly related to plaque formation 

(Victor et al. 2009).  

In the normal physiological state, many of the large human arteries possess a 

microvasculature in their adventitial layer called the vasa vasorum. Large blood vessels 

are composed of three layers: tunica media, tunica intima, and tunica adventia. The tunica 

intima is the inner layer of the blood vessel wall and consists of endothelium. The middle 

layer of the vessel wall, tunica media, contains circularly arranged smooth muscle cells. 

The outer layer is the tunica adventia, which is made of collagen fibers mixed with nerve 
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fibers, lymphatic vessels, and microvasculature. Normal vasa vasorum originate from 

coronary artery branch points at regular intervals and run longitudinally along the vessel 

wall as is illustrated in (Figure 1.1). 

Detection of early development of atherosclerosis can be accomplished using a 

variety of screening and diagnostic tests such as electrocardiogram, stress test, CT scan or 

arteriography. Moreover, biomarkers levels within the plasma can be helpful to diagnose 

atherosclerosis; for example elevated plasma concentrations of both fibrinogen and C-

reactive protein (CRP), which are acute phase proteins released in response to 

inflammation (Kaperonis et al. 2006). 

 

 
Figure 1.1 Illustration of Vasa Vasorum in Large Blood Vessel (Seeley et al. 

2007) 
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1.2 Plaque Formation 

Atherosclerosis mainly affects wall thickness of medium and large arterial blood 

vessels. Endothelial dysfunction has been thought to have a significant role in 

pathogenesis of atherosclerosis. Also, overproduction of reactive oxygen species (ROS) 

has been determined to be related to the development of atherosclerosis (Davignon and 

Ganz 2004). 

Endothelial damage or dysfunction will increase the permeability of the 

endothelium, known as endothelial activation. The infiltration of LDL into the inner wall 

of blood vessels, the arterial intima, will increase due to impaired endothelial function. 

Over time, substances such as LDL, cholesterol and fatty materials will accumulate at 

damaged areas as shown schematically in (Figure 1.2). LDL will be oxidized by reactive 

oxygen species to form oxidized-LDL (ox-LDL). Then, ECs from the damaged sites will 

initiate immune responses and release chemoattractants to attract monocytes from the 

blood and induce an inflammatory reaction. Monocytes will differentiate into 

macrophages in response to oxidized-LDL stimulation. The first immune response will 

trigger a further cycle of immune responses. Macrophages will continue to take up and 

digest the modified cholesterol molecules. Macrophages are not able to clear the 

oxidized-LDL from the intima, although these white blood cells are intended to play a 

protective role. This process ends with formation of foam cells and eventual generation of 

fatty streaks, which are found in human aorta during the first decade of life (Lusis 2000). 

Vascular smooth muscle cells (VSMC) begin to proliferate and migrate from the 

media to the intima. The initial lesion progresses into an advanced plaque with a fibrous 

cap, overlying a necrotic lipid core. The fibrous cap acts as a protective layer between the 
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lesion and the lumen of the blood vessel. The media and neo-intima will be subjected to a 

restriction of oxygen supply and nutrients, and the hypoxic environment may lead to 

expression of Vascular Endothelial Growth Factor (VEGF) and other angiogenic 

regulators that stimulate angiogenesis, thereby promoting plaque growth. Various 

research studies have identified intra-plaque hemorrhage as a critical factor in 

atherosclerotic plaque growth and destabilization (Sluimer etal.2009; Khurana et al. 

2005; Di Stefano et al. 2009; Virmani et al. 2005; Seeley et al. 2007). 

 

 

 

The composition of a plaque largely determines the risk of rupture for fibrous 

caps, which may cause an acute ischemic event, for example a myocardial infarction or 

stroke (Owens et al. 2004). Thrombus formation is a significant clinical complication of 

atherosclerosis resulting from rupture of an unstable atherosclerotic plaque, in which 

Figure 1.2 Illustration of atherosclerotic plaque formation (Choudhury, Fuster 

and Fayad 2004) 
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formation of microvessels (angiogenesis) contributes to the development of plaques and 

increases the risk of plaque rupture (Sluimer et al. 2009). 

1.3 Endothelial Cell Function 

Endothelial cells play a wide variety of critical roles in controlling vascular 

function. It has been proposed that hemangioblasts, as common progenitors of 

endothelial, hematopoietic cells, and angioblasts, differentiate from the mesoderm in the 

embryo and VEGF receptor is expressed early in these progenitors (Hirashima 2009). 

VEGF is the most critical driver of vascular formation, as it is required to initiate the 

formation of immature vessels by vasculogenesis or angiogenic sprouting. Endothelial 

cells interact with circulating cells and cells present in the vascular wall including smooth 

muscle cells, during homeostasis. Being at the interface between blood and tissue, 

endothelial cells are most susceptible to changes in blood composition and in blood flow. 

Endothelial dysfunction could dispose specific areas of the vasculature to coagulation, 

inflammation and vasoconstriction. Endothelial dysfunction is certainly a key initiating 

event in several pathological conditions, including atherosclerosis (Michiels 2003).  

VEGF plays a major role in all aspects of vascular development, including 

endothelial cell proliferation, migration, and survival. Endothelial cells are the main 

regulators of vascular development. The biological effects of VEGF are mediated by two 

receptor tyrosine kinases (RTKs), VEGFR-1 and VEGFR-2.  It has been determined that 

VEGF is a survival factor for endothelial cells, both in vitro and in vivo. In vitro,VEGF 

prevents apoptosis induced by serum starvation where this activity is mediated by the 

phosphatidylinositol (PI)-3 kinase–Akt pathway. VEGF also induces expression of the 

anti-apoptotic proteins Bcl-2 and A1 in endothelial cells. In vivo, the prosurvival effects 
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of VEGF are developmentally regulated. It has also been shown that inhibition of VEGF 

results in extensive apoptotic changes in the vasculature of neonatal but not adult mice 

(Ferrara,Gerber and LeCouter 2003). 

1.4 Physiological and Pathological Angiogenesis 

Angiogenesis is the process of new blood vessel development from pre-existing 

vasculature. This process involves endothelial cell proliferation, degradation of the 

basement membrane and surrounding extracellular matrix, cell migration, and 

tubulogenesis. Angiogenesis consists of four stages: initiation, progression, 

differentiation, and maturation. It is controlled by a complex regulatory system composed 

of pro-angiogenic and anti-angiogenic factors, among which the VEGF family plays a 

key role through its pro-angiogenic activity, in addition to other factors and enzymes 

(Hoeben et al. 2004; Bussolino et al. 1997; Carmeliet et al. 2003). De novo blood vessel 

formation, or vasculogenesis, is an important process for the survival of living organisms 

in the embryonic state. In the adult state, physiological angiogenesis plays an essential 

role in wound healing, growth of the uterine lining, and the female reproductive   cycle. 

However, excessive, insufficient or abnormal angiogenesis contributes to the 

pathogenesis of many disorders such as cardiovascular diseases, cancer, arthritis, 

psoriasis, retinopathy, and inflammation (Khurana et al. 2005; Carmeliet et al. 2003; 

Kaiser et al. 1999). 
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1.5 Anti-angiogenic Therapy and Sparstolonin B Effect 

Anti-angiogenic therapy has been recognized as a promising approach recently 

particularly in cancer treatment. This approach has advantages over conventional 

anticancer therapy because the therapy does not directly target the tumor but inhibits the 

development of blood vessels by targeting the endothelial cells. Thus, anti-angiogenic 

therapy is indirectly cytotoxic to the tumor cells (Hoeben et al. 2004; Somani et al. 2013). 

This new approach is still questionable as a treatment for atherosclerotic disease because 

angiogenesis in atherosclerosis is more complex and depends on disease severity 

(Khurana et al. 2005); however, some previous work has demonstrated effective 

treatment procedures to inhibit neovascularization in atherosclerotic plaques that will 

increase their stability and thus, decrease thrombosis (Stefanadis et al. 2007). 

 

Figure 1.3 Illustration of angiogenesis process (Griffioen and Molema 2000). 
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Most chemotherapeutic drugs are considered have some anti-angiogenic activity. 

This activity was demonstrated at a lower dose of chemotherapeutic drugs, including 

cyclophosphamide, paclitaxel, doxorubicin, and vincristine, than would be required to 

target tumor cells. In addition, many anti-angiogenic agents showed a successful 

suppression of angiogenesis especially within tumors such as anti-VEGF monoclonal 

antibody and tyrosine kinase inhibitors. Moreover, EGF receptor inhibitors have been 

shown to suppress VEGF expression through blocking the VEGF-R2 receptor signaling 

(Scappaticci 2002). Angiogenesis gene therapy is another promising approach that is 

directed to tumor endothelial cells and their microenvironment. The use of gene therapy 

that delivers anti-angiogenesis genes has shown promise in preclinical models in mice. 

The expression of EC specific cell surface molecules like vascular endothelial growth 

factor receptor (VEGFR), E selectin or angiogenic growth factors (VEGF, FGF, PDGF) 

produced by tumor cells can be inhibited by specific antibodies, antisense RNA, or gene 

specific siRNA. The targeted gene therapy can be achieved by using either viral vectors 

or nanoparticles to target anti-angiogenic genes to tumor vasculature (Tandle, Blazer, and 

Libutti 2002). 

The Sparganium stoloniferum plant has been used traditionally in Chinese 

medicine for the treatment of cancer. Extracts and other isolated chemical compounds 

from this herb, including a sucrose ester, a phenylpropanoid glycerol, carboxylic acid 

esters, and a phenylpropanoid glycoside, possess potent anti-cancer effects. It is already 

known that anti-tumor agents often show the ability to inhibit angiogenesis, and 

Sparstolonin B (SsnB) is one of the active compounds of this plant that has anti-tumor 
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activity. Also, SsnB has been identified as a compound that possesses anti-angiogenic 

activity in addition to its anti-inflammatory properties (Bateman et al. 2013). 

SsnB is a newly described polyphenolic compound isolated from the tubers of 

Sparganium stoloniferum. It has been identified as a compound containing the core 

structures of both xanthone and isocoumarin using NMR spectroscopy and X-ray 

crystallography (Liang et al. 2011) as shown in (Figure 1.5.1). The naturally occurring 

xanthones and isocoumarins possess anti-inflammatory, antioxidant, anti-atherosclerotic, 

and antitumor activities (El-Seedi et al. 2010; Fylaktakidou et al. 2004). Sparganium 

stoloniferum has been used historically in the Chinese herbal medicine “SanLeng” as an 

herbal remedy for the treatment of several inflammatory diseases.  

 

 

 

 

 

 

 

 

 

 

Cytotoxicity measurements of SsnB show that the compound is safe to use in 

concentrations up to 100M in different cell types, which include mouse peritoneal 

Figure 1.4 Structure of SsnB (Liang et al. 2011) 
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macrophages, human monocytic THP-1 cells, HUVECs, and human aortic smooth 

muscle cells (HASMCs).  

Recently, SsnB has been successfully synthesized based upon its well- known 

xanthone core structure through development of a practical method consisting of 

sequential chemical reactions to yield the final SsnB product. It has been shown that the 

synthetic SsnB shares identical structure with the plant-derived SsnB using HPLC and 

NMR analysis. The final product has purity greater than 99%, which has been achieved 

using HPLC and mass spectrometry techniques to maintain reproducibility and to control 

the purity (Hu et al. 2012).  

1.6 Published Research Studies 

In previous research, it has been demonstrated that SsnB is a selective Toll-like 

receptor antagonist (TLR2 and TLR4); it blocks TLR2- and TLR4-triggered 

inflammatory signaling in macrophages by inhibiting the recruitment of MyD88 to TIR 

domains of TLR2 and TLR4 but does not block signaling in response to TLR3 and TLR9 

ligands (Liang et al. 2011). Toll-like receptors are expressed by macrophages, dendritic 

cells, and many other cell types. TLRs are known for their activity as the first line of 

defense against invading pathogens such as bacteria and viruses (Kumar, Kawai and 

Akira 2011). The therapeutic consequences of blockage of excessive TLR signaling are 

being demonstrated for many inflammatory diseases including inflammatory 

cardiovascular diseases. In addition, it has been shown that SsnB suppressed multiple 

signaling pathways downstream of TLR2 and TLR4 activation including MAPK and NF 

B pathways (Liang et al. 2011; Liang et al. 2013). 
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According to a previously published paper, it has been demonstrated that SsnB 

possesses anti-inflammatory effects on vascular endothelial cells. SsnB showed a 

suppressive effect on lipopolysaccharide (LPS)-induced expression of interleukin (IL)-1b 

and monocyte chemoattractant protein 1 at the transcriptional and translational levels in 

HUVECs (Liang et al. 2013). LPS is considered the major portion of the outer membrane 

of Gram-negative bacteria, which is an important pathogenic stimulus, in addition to 

being a ligand for Toll-like receptor (TLR4) (Wiedermann et al. 1999). Moreover, LPS in 

the blood directly promotes vascular inflammation via the activation of resident cells 

such as monocytes and endothelial cells (Roth et al.). 

Published data from a previous study suggests that SsnB targets endothelial cells 

and inhibits angiogenesis by interfering with crucial steps in the process (Bateman et al. 

2013). The data shows that SsnB is an inhibitor of endothelial cell morphogenesis and 

cell migration. In addition, the results suggest that SsnB is able to inhibit cell 

proliferation through arresting the cell cycle in the G0/G1 phase. Microarray data showed 

differential expression of important genes involved in angiogenesis in response to SsnB 

treatment, including genes in pathways associated with the cytoskeleton, cell 

proliferation, and cell cycle. Using the chick chorioallantoic membrane (CAM) assay, an 

ex vivo angiogenesis assay, it was demonstrated that SsnB causes an inhibition of blood 

vessel formation in the chick embryos, where the vessels in SsnB-treated embryos are 

shorter in length and show reduced branch formation compared to control groups 

(Bateman et al. 2013). 
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1.7 Specific Aims 

We hypothesize that SsnB will exert its anti-angiogenic effects by changing the 

cell cytoskeleton, enhancing focal adhesion formation, and interfering with early 

response gene up-regulation. 

Specific Aim 1  

To test the hypothesis that SsnB influences endothelial cell morphology and 

cytoskeletal organization. For this purpose, we will use immunofluorescence analysis of 

actin filaments and microtubules. 

Specific Aim 2  

To test the hypothesis that SsnB promotes focal adhesion formation in HUVECs.  

Immunofluorescence analysis for focal adhesions will be used to investigate the anti-

angiogenic effect of SsnB. 

Specific Aim 3  

To test the hypothesis that SsnB interferes with early response gene up-regulation. 

Immunoblot analysis and real time qRT-PCR will be used to examine the changes in 

protein and mRNA expression of c-Myc, c-Fos, and c-Jun due to the effect of SsnB 

treatment. 
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CHAPTER 2 

THE EFFECTS OF SPARSTOLONIN B ON CYTOCKELETON 

ARRANGEMENT AND MORPHOLOGY OF ENDOTHELIAL CELLS 

2.1 Introduction 

Since inhibition of angiogenesis is associated with changes in cell motility and cell 

proliferation, we investigated in this work the effect of SsnB on the cytoskeleton 

including actin filaments, microtubules, and focal adhesions. The actin cytoskeleton has a 

vital role in various cellular processes such as migration and cytokinesis. In addition, 

abnormalities in actin dynamics are associated with many pathological disorders such as 

cancer. Actin filaments form stress fibers that contribute to cell migration; however, other 

studies observed that stress fibers are more prominent in stationary cells suggesting that 

stress fibers may inhibit cell migration under specific conditions (Tojkander et al 2012; 

Burridge 1981). Microtubules are structural components of the mitotic spindle, and 

microtubule dynamics play an important role in several cellular processes including 

intracellular trafficking, cell migration and cell division. Inhibition of microtubules 

results in blocking of cell cycle progression in mitosis, whereas prolonged mitotic arrest 

triggers various apoptotic pathways (Rai et al. 2012). In addition, focal adhesions, 

dynamic protein complexes that connect the cytoskeleton of a cell to the extracellular 

matrix, play an essential role in vital biological processes including cell motility, cell 

proliferation and differentiation. Anti-angiogenic agents have been shown to diminish 
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cell migration and to increase attachment of cells to their substrate (Petit and Thiery 

2000).  

2.2 Materials and Methods 

Compounds—Sparstolonin B (SsnB) was purified from the plant Sparganium 

stoloniferum and its structure identified with isocoumarin core using NMR spectroscopy 

and X-ray crystallography (Liang et al. 2011).  Recently, the compound has been 

synthesized and tested for efficacy (Hu et al. 2012). For the in vitro experiments, SsnB 

was dissolved in DMSO (74.5 mM and 100 mM stock solutions) and freshly diluted in 

HUVEC medium before use. 

Cells—Human umbilical vein endothelial cells (HUVECs) were obtained from 

Lonza (Hopkinton, MA) and cultured on petri plates (100 X 20 mm) coated with 0.1% 

gelatin. HUVECs were cultured in endothelial cell medium supplemented with 10% fetal 

bovine serum (FBS) and endothelial cell mitogen / growth supplement (Biomedical 

Technologies, Stoughton, MA).  The endothelial cell medium was replaced every 2-3 

days, and the cells were passaged after complete confluence was reached. Cells were 

used between third and fifth passage. 

Immunofluorescence analysis of the cytoskeleton—HUVECs were trypsinized 

from confluent plates and then grown overnight on 0.1% gelatin-coated multi-well 

chamber slides with initial seeding density of 5,000 cells per well. Next, various 

concentrations of SsnB (1, 10, and 100 µM) or vehicle control (0.1% DMSO) were added 

to the cells in assigned wells.  After 6 hours of treatment, cells were fixed with 2% 

formaldehyde in, cytoskeleton buffer with sucrose (CBS) for 20 minutes and 

permeabilized with PBS- 0.1%Triton X-100 for 10 minutes. Fixed cells were washed and 
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incubated at room temperature for 30 minutes with rabbit anti- /-Tubulin antibody 

(Cell Signaling Technologies), 1:50. After washes, cells were incubated with 1:100 

Rhodamine Red X (RRX)-conjugated donkey anti-rabbit antibody (Jackson 

ImmunoResearch Laboratories, West Grove, PA) together with the F-actin- binding 

Alexa Fluor® 488 phalloidin (Invitrogen/ Life Technologies). Coverslips were then 

mounted with Dako fluorescent mounting medium. Samples were analyzed on a laser 

scanning confocal microscope (Zeiss LSM 510 META) in the Instrumentation Resource 

Facility (IRF) at the USC School of Medicine. Cells were observed with a 40X objective 

lens, using a FITC filter to visualize F-actin and a CY3 filter for tubulin. Results were 

observed in four separate experiments. 

Immunofluorescence analysis of focal adhesions—HUVECs were trypsinized 

from confluent plates and then grown overnight on 0.1% gelatin-coated multi-well 

chamber slides with initial seeding of 5,000 cells per well. SsnB treatment of various 

concentrations (1, 10, and 100 µM) or vehicle control (0.1% DMSO) was added to the 

cells in assigned wells.  After 6 hours of SsnB treatment, the cells were fixed with 4% 

formaldehyde/CBS for 20 minutes and permeabilized with PBS- 0.5% Triton X-100 for 

10 minutes. After several washings, cells were incubated with mouse anti-vinculin 

antibody (hVIN-1; Novus Biologicals), 1:400, at room temperature for 30 minutes to 

stain focal adhesions. Then, cells were incubated with 1:100 RRX-conjugated donkey 

anti-mouse IgG antibody (Jackson ImmunoResearch Laboratories, West Grove, PA) in 

addition to actin staining as described previously. The slide was then cover slipped using 

Dako fluorescent mounting medium, and the cells were observed on a laser scanning 

confocal microscope (Zeiss LSM 510 META) with a 40X objective lens using the FITC 
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filter for F-actin and the CY3 filter for vinculin. Image-Pro Plus software was used to 

analyze the images. First, the brightness and contrast of images were uniformly adjusted. 

Images were thresholded by histogram-based segmentation to identify focal adhesion 

pixels, the bright objects. The size of objects counted as focal adhesions was between 20 

and 250 pixels in area, and the total area of focal adhesions was quantified in 

approximately 100 cells for each treatment.  Also, the same software was used to quantify 

cell area and cell perimeter. The threshold for images was identified to separate cell body 

and background region. After thresholding the image, the regions less than 10 pixels in 

area and perimeter are discarded. The brightness and contrast were maintained constant 

for all images for each measurement (focal adhesion area or cell perimeter/cell area). 

Results are representative of those obtained in three separate experiments. 

Statistical Analysis—Data were represented as mean ± SD for each group. 

Comparisons among mean values of the treatment groups and control group were done 

using one-way and two-way ANOVA. Holm-Sidak test was used for comparisons 

between groups for the data that showed significance by ANOVA (p<0.05). 

2.3 Results 

 SsnB influences endothelial cell morphology and cytoskeleton organization—

SsnB has been shown to interfere with endothelial cell migration and proliferation 

(Bateman et al 2013). Since cytoskeleton is directly related to migration and proliferation, 

we investigated the effect of SsnB on endothelial cell cytoskeleton. In addition, since 

changes in cell shape are often associated with changes in motility, the effects of SsnB on 

endothelial cell morphology were investigated. We also attempted to examine 

microtubule organization, but our staining procedure was unsuccessful as presented in 
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[Figure 2.1]. Both control cells and SsnB treated cells showed disconnected microtubules 

(B) whereas cells used for / tubulin antibody titration showed well organized 

microtubules (A). SsnB-treated cells had more actin stress fibers across the cell body than 

control cells, and this effect was more intense at 100M concentration as can be observed 

qualitatively in [Figure 2.2]. Also, SsnB treatment resulted in a significant dose 

dependent increase in cell perimeter/cell area at concentrations 1, 10, 100 M (p < 0.05 

ANOVA, Sidak’s test) [Figure 2.3].  

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, we investigated cell shape and found that SsnB-treated cells tended to 

be more irregular in shape at high concentrations than control cells [Figure 2.4]. Cell 

shape was defined using the equation (4 x cell area/ (cell perimeter) 
2
), where 1 indicates 

 

A B

Figure 2.1 Microtubules in HUVECs. (A) Cells were stained for microtubules in red 

using / tubulin antibody for the purpose of antibody titration, to determine the ideal 

concentration for the experiment. (B) SsnB treated cells and control cells were stained 

for microtubules using 1:50 / tubulin antibody. Cells in (B) show fragmented 

microtubules in both control and treated groups.     
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a perfect circle and smaller values indicate a more irregular shape. Our data suggest that 

SsnB may affect endothelial cell migration by altering cytoskeletal organization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

   

 Figure 2.2 Representative example of SsnB effect on cytoskeletal organization of 

endothelial cells. HUVECs adherent to gelatin were exposed to 1 M, 10 M, and 100 

M concentrations of SsnB for 6 hours. SsnB induces stress fibers in treated cells, and 

the highest concentration induces the maximum effect. Green stained for F-Actin 

filaments, and scale bar = 20m. n = 100 cells per group. 
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** **
***

Figure 2.3 SsnB effect on HUVEC morphology. Treated cells exhibit a significant 

increase in cell perimeter to area ratio compared to control. **p<0.05 vs. vehicle 

control, Sidak’s test. *** p<0.001 vs. vehicle control, Sidak’s test. n = 100 cells per 

group, error bars correspond to +1 SD.  
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Figure 2.4 SsnB effect on HUVEC shape. Treated cells demonstrate insignificant 

increase in shape irregularity compared to control group where the equation (4 x cell 

area/ (cell perimeter)
2
) was used to calculate cell shape. The closest values to 1 

indicate more rounded cells. Data are calculated from more than 100 cells for each 

group. Error bars indicate standard deviation. 
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SsnB promotes focal adhesion formation—We investigated the effect of SsnB on 

focal adhesions due to their important role in cell migration. As presented in [Figure 2.5], 

endothelial cells show staining for focal adhesions in addition to actin filaments. Figure 

2.6 shows representative results from focal adhesion staining of HUVECs. Cells treated 

with SsnB showed an enhanced formation of focal adhesions in a dose-dependent manner 

at concentrations of 1, 10, and 100M. The results are statistically significant (p<0.05 

ANOVA) even though they show high variability. These data suggest that SsnB 

treatment may increase attachment of endothelial cells to their substrate by increased 

formation of focal adhesions, consistent with previously published observations of 

impaired cell migration in SsnB treated HUVECs after 6 hours of treatment (Bateman et 

al. 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.5 Focal adhesions in HUVECs. Control and SsnB treated HUVECs were 

stained with Alexa Fluor® 488 phalloidin (Green) for actin filaments, and stained 

with anti-vinculin antibody and RRX-labeled secondary antibody (Red) for focal 

adhesions.  
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Figure 2.6 SsnB promotes focal adhesion formation. Treated cells show dose-

dependent increase in focal adhesion area (p<0.05 ANOVA) with presence of high 

variability in the results obtained. The results were not significant using Holm-Sidak 

test to compare treated groups to control. n = 100 cells per group, error bars indicate 

+1 SD. 
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CHAPTER 3 

EFFECTS OF SPARSTOLONIN B ON THE BIOCHEMICAL 

COMPONENTS OF ENDOTHELIAL CELLS 

 

3.1 Introduction  

In an effort to determine how SsnB inhibits angiogenesis at the molecular level, 

we have investigated the expression of immediate early response genes such as c-Fos, c-

Jun, and c-Myc. Early response genes are a set of genes that are induced in response to 

both cell-extrinsic and cell-intrinsic signals and do not require de novo protein synthesis 

for their expression (Fowler et al. 2011). The AP-1 protein family, including c-Fos and c-

Jun, is associated with cell proliferation through their ability to regulate the expression 

and function of cell cycle regulators. The expression of c-Myc is significant for 

endothelial cell proliferation, migration, and therefore angiogenesis. Previously published 

cancer studies demonstrate an important rule of c-Myc and c-Jun in tumor angiogenesis; 

these oncogenes possess the ability to suppress the expression of anti-angiogenic factor 

thrombospondin-1 (TSP-1) to provoke angiogenesis in progressed tumors. These genes 

contribute effectively to angiogenesis in various tumor types, and the same concept can 

be extended to angiogenesis in plaques (Vleugel et al. 2006; Baudino et al. 2002; 

Shaulian and Karin 2001; Deed et al. 1997). 
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3.2 Materials and Methods 

Compounds—Sparstolonin B (SsnB) was purified from the plant Sparganium 

stoloniferum as described in a previously published paper (Liang et al. 2011).  Recently, 

the compound has been synthesized and tested for efficacy (Hu et al. 2012). For the in 

vitro experiments, SsnB was dissolved in DMSO (74.5 mM and 100 mM stock solutions) 

and freshly diluted in HUVEC medium before use. 

Cells—Human umbilical vein endothelial cells (HUVECs) were obtained from 

Lonza (Hopkinton, MA) and cultured on petri plates (100 X 20 mm) coated with 0.1% 

gelatin. HUVECs were cultured in endothelial cell medium supplemented with 10% fetal 

bovine serum (FBS) and endothelial cell mitogen / growth supplement (Biomedical 

Technologies, Stoughton, MA).  The endothelial cell medium was replaced every 2-3 

days, and the cells were passaged after complete confluence was reached. Cells were 

used between third and fifth passage. 

Immunoblot analysis— HUVECs were cultured in 100 X 20 mm polystyrene 

culture plates coated with 0.1% gelatin to approximately 80% confluence. Cells were 

treated with 100M SsnB for different incubation times (1 hr, 2 hrs, and 3 hrs), and 

control cells were incubated with0.1% DMSO vehicle for the same time intervals.  After 

lysing cells of each group with 200 l Berk’s lysis buffer (BLB), total protein amount 

was measured using a DC (detergent compatible) protein assay (Bio-Rad Laboratories) in 

which bovine serum albumin (BSA) was used as the protein standard.  Thirty micrograms 

of total protein from each sample were mixed with loading dye buffer, boiled, and 

electrophoretically separated on 10% SDS polyacrylamide gels. Proteins were 

electrotransferred to PVDF membranes (Bio-Rad). Membranes were blocked in 5% 
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nonfat milk in Tris-buffered saline containing 0.05% Tween (TTBS) and incubated 

overnight with primary rabbit antibodies against c-Myc, c-Fos (Cell Signaling 

Technologies) or c-Jun (Santa Cruz Biotech), at 1:1000 dilutions in 1% milk-TTBS. After 

washings, membranes were incubated in 1:3000 dilution of horse-radish peroxidase 

(HRP)-conjugated goat anti-rabbit antibody (Bio-Rad) in 1% milk-TTBS. 

Immunoreactive band specificity was determined by enhanced chemiluminescence 

detection (Pierce). After initial probing, membranes were stripped with a buffer 

containing 0.6M Tris-Cl, 2% SDS, 0.7% -mercaptoethanol at room temperature for 30 

min, and then reprobed with (1:1000) -actin antibody (MediMabs, Canada) as a loading 

control. Results are representative of three separate experiments.  

Densitometric measurements of Western blots—Image Pro Plus 7 software was 

used to measure the density of the imaged bands. The brightness and contrast of the blot 

image were adjusted to separate the bands, appearing as bright objects, from the 

background. The average intensity of each band was measured. The experimental bands 

were normalized to -actin bands, and then the ratio between the normalized value of 

each band and the vehicle control (at 0 hour) was obtained. The ratio represents a 

quantitative measurement of c-Myc protein expression.   

Real Time- PCR— HUVECs were chosen for real time PCR from 90% confluent 

plates (100 X 20 mm polystyrene, tissue culture-treated petri plates coated with 0.1% 

gelatin). Cells were trypsinized and seeded (400,000 cells per well) overnight in 6 well 

polystyrene culture plates coated with 0.1% gelatin. Half of the wells received HUVEC 

medium containing 100 M SsnB, and the remaining plates received vehicle control 

(0.1% DMSO in complete growth medium).  The plates were incubated for several time 
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intervals (1 hr, 2 hrs, and 3 hrs) to allow SsnB to have an effect on the expression of early 

response genes.  Following incubation, the cells were lysed using Trizol reagent (Life 

Technologies) according to the manufacturer’s instructions. Total RNA was extracted 

using chloroform, and then samples were centrifuged (13,000 rpm) for 15 min at 4C. 

Approximately 350 l of aqueous layer was collected, and isopropanol was added to 

precipitate the RNA followed by centrifugation for 10 min under the same conditions. 

The RNA pellet was washed by addition of 1 ml of 75% ethanol and centrifuged at 

13,000 rpm for 5 min. The pellet was re-suspended in 30 l nuclease free water. The 

concentration of RNA was determined spectrophotometrically at 260 nm and the purity 

of RNA was assessed by measuring the 260 nm/ 280 nm ratio. First strand cDNA was 

prepared from the RNA with reverse transcriptase (iScript cDNA synthesis kit, BioRad). 

The RNA was amplified using c-Myc, c-Fos, or c-Jun primers (Qiagen) and iQ SYBR 

Green super mix (BioRad). One-step RT-PCR reactions were completed on the BioRad 

CFX Connect thermal cycler system in the Instrumentation Resource Facility at the USC 

School of Medicine.  The expression levels were normalized to the housekeeping gene 

GAPDH, and RNA levels were quantified and compared between groups with the 

relative Pfaffl method for c-Myc (Pfaffl 2001). In addition, we used the CT method for 

c-Fos and c-Jun to compare RNA levels between groups. Representative results from 

three separate experiments are shown. 

Statistical Analysis—Data were represented as mean +SD for each group. 

Comparisons among mean values of the treatment groups and control group were done 

using one-way and two-way ANOVA. Holm-Sidak test was used for pairwise 

comparisons between groups for the data that showed significance by ANOVA (p<0.05). 
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3.3 Results 

SsnB effects on early response gene expression— Western blot analysis was used 

to investigate the effect of SsnB on c-Fos, c-Jun, and c-Myc protein levels. We did not 

detect any signal for c-Fos protein, and it was hard to detect c-Jun signal because of the 

appearance of several nonspecific bands near the expected position of c-Jun. However, 

Western blot analysis showed that treatment with vehicle control (0.1% DMSO) resulted 

in increased expression of c-Myc protein which peaked at 2 hours and then diminished.  

This effect appeared to be abrogated by treatment with 100 M SsnB; however, the data 

did not reach statistical significance. For verification purposes we investigated the effect 

of SsnB on c-Myc mRNA levels. qRT- PCR analysis demonstrates a decrease in c-Myc 

gene expression after SsnB treatment compared to the control group, which supports the 

results obtained from immunoblot analysis (p<0.05 ANOVA, Sidak’s test) [Figure 3.1]. 

In addition, we investigated the effect of SsnB on c-Fos and c-Jun mRNA level. Our 

preliminary data shows that SsnB treated cells reveal a decrease in expression of both 

genes compared to the control group [Figure 3.2]. This reduction effect was significant 

for c-Fos (p<0.05 ANOVA, Sidak’s test), but it was insignificant for c-Jun. The data 

suggests that SsnB treatment may interfere with or inhibit up-regulation of c-Myc, c-Fos 

and c-Jun. This effect may relate to the inhibition of cell cycle progression by SsnB 

treatment, which has been demonstrated previously (Bateman et al. 2013). 
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Figure 3.1 SsnB effect on c-Myc expression. (A) Western blot analysis and quantitative 

densitometry of c-Myc protein expression. When data are normalized for protein loading 

(actin) and compared to control, c-Myc shows an apparent decrease in expression in 

SsnB-treated cells relative to control, which did not reach statistical significance. (B) 

Real Time-PCR shows a decrease of c-Myc mRNA expression (normalized to 

housekeeping gene GAPDH) in response to SsnB treatment (*p<0.05 ANOVA, Sidak’s 

test). All data represent three observations for each group and are expressed as mean 

values +SD; all groups were compared to 1hr vehicle control. 
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Figure 3.2 Effects of SsnB on relative c-Fos and c-Jun mRNA expression. Real 

Time-PCR shows a decrease in expression of both c-Fos and c-Jun mRNA 

(normalized to housekeeping gene GAPDH mRNA) in response to SsnB treatment. 

(A) c-Fos data were statistically significant at the 2-hr time point (*p<0.05 ANOVA, 

Sidak’s test); all groups were compared to 1 hr vehicle control. However, c-Jun data 

(B) were statistically insignificant. Data represent three observations for each group 

and are expressed as mean values +SD. 
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CHAPTER 4 

DISCUSSION 

In the present study, we sought to assess the anti-angiogenic effect of SsnB at the 

cellular and molecular level of endothelial cells. Our results demonstrate that HUVECs 

treated with high concentrations of SsnB (10 and 100 M) show an increase in formation 

of actin stress fibers compared to controls. Furthermore, our data shows that focal 

adhesion area, which is related to stress fiber formation, increased in cells treated with 

high SsnB concentrations. Qualitative analysis of focal adhesion formation was 

unreliable because of cell population variability; some cells were bigger in size than 

others, so it was hard to conclude a difference in focal adhesion formation between 

control and treated groups. Quantitative analysis was used where focal adhesion area per 

cell was determined and statistically represented as shown previously in [Figure 2.3.6]. 

These changes affect the morphology of endothelial cells. SsnB-treated cells demonstrate 

larger perimeter/cell area ratio than control cells, and become irregular in shape. Taken 

together, the results suggest that cells treated with SsnB increase their attachment to the 

substrate, which may play a role in inhibiting their migration, an essential process in 

angiogenesis. Actin stress fibers play an important role in cell migration; however, stress 

fibers contribute to cell adhesion as well through formation of stable actin bundles and 

focal adhesions (Tojkander et al. 2012). Previous work has shown that the tension and 

contractility of actin stress fibers can send signals that are important for focal adhesion
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maturation and dynamics (Johnson et al. 2007). These results support the data shown by 

Bateman et al. in a previous study that demonstrated inhibition of endothelial cell 

migration in a Transwell migration assay in response to SsnB treatment (Bateman et al. 

2013). 

Microtubules are structural components of the mitotic spindle, and microtubule 

dynamics play an important role in several cellular processes including intracellular 

trafficking, cell migration and cell division (Müsch 2004). The inhibition of microtubule 

assembly dynamics has been shown to be the mode of action for several clinically 

successful anticancer drugs including vinblastine and vincristine (Dumontet and Jordan 

2010; Singh et al. 2008). SsnB showed the ability to interfere with cell cycle progression 

in mitosis through down regulating some cyclins and cyclin-dependent kinases, 

regulatory proteins that control cell cycle progression, including CCNE2, CCNB1, 

CDC6, and CDC2. In our study, we examined whether SsnB could perturb microtubule 

assembly in vitro, but we did not obtain any meaningful results. The microtubules in 

stained cells, both control and SsnB treated, were fragmented and disconnected. We tried 

several approaches to determine why the anti-tubulin staining was unsuccessful. We tried 

to modify the staining procedure by using cold methanol as a fixative instead of 

formaldehyde.  We also tried to use different concentrations of permeabilization solution, 

PBS- 0.5%- 0.1 %Triton X-100. Moreover, we were careful to ensure that the cells were 

healthy by using a new passage for each experiment, but all ended with the same 

conclusion. However, we will try to determine whether the antibody itself is the source of 

the problem. Since there is an identified connection between microtubules and cell 
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division, which SsnB interferes with, we are planning to continue to investigate the effect 

of SsnB on microtubule assembly in the future. 

 We observed either reduced upregulation or downregulation of the early response 

genes, specifically c-Myc, c-Fos, and c-Jun, in HUVECs after SsnB treatment. The effect 

of SsnB on c-Myc was more powerful in this study because it affected both c-Myc 

protein and mRNA. Immunoblotting of c-Myc protein revealed a decrease of expressed 

protein in response to SsnB treatment relative to vehicle control, and data were confirmed 

by qRT-PCR. The c-Myc mRNA level was reduced. This could be due either to a 

decrease in transcription or to an increase in its mRNA degradation, which remains to be 

determined. c-Myc functions are necessary and sufficient for the entry of most cells into 

the DNA synthetic (S) phase of the cell cycle (De Alboran et al. 2001). Studies of c-Myc 

in cancer showed that c-Myc is essential for vasculogenesis and angiogenesis during 

development and tumor progression. Deletion of c-Myc has a lethal effect on c-Myc-

deficient embryos. c-Myc is also required for the proper expression of angiogenic factors 

such as VEGF; however, the precise mechanism by which c-Myc controls their 

expression is not resolved. Also, it is assumed that VEGF regulation by c-Myc to be 

indirect (Baudino et al. 2002). 

qRT-PCR analysis demonstrates a reduction of c-Fos and c-Jun mRNA levels 

between 1 and 2 hours after SsnB treatment, even though no corresponding protein 

expression data were obtained by immunoblotting. c-Fos and c-Jun, members of the AP-1 

protein family, have biological functions in controlling cell proliferation, survival and 

death. One of the major mechanisms that modulates AP-1 activity is the differential 

expression of AP-1 proteins in response to extracellular stimuli (Shaulian and Karin 
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2001). A study revealed new ways to block tumor angiogenesis by targeting Jun/AP-1, 

and established a functional, in vitro link between activated c-Jun and angiogenesis in 

breast cancer (Vleugel et al. 2006). Another study showed that the nuclear oncogene c-

Fos regulates c-Fos-induced growth factor/vascular endothelial growth factor D 

(Figf/VEGF-D). This regulation is involved in transformation and in regulation of cell 

growth and differentiation of various tissues. Also, it has been demonstrated that 

developed tumors in c-Fos deficient mice appear lacking in vascularization (Marconcini 

et al. 1999). 

In conclusion, our data demonstrates that early effects of SsnB on endothelial 

cells include promoting formation of stress fibers and focal adhesions, and reduction of 

early response gene expression. These events may contribute to the anti-angiogenic effect 

of SsnB. Future additional studies are required to fully understand the effect of SsnB on 

microtubule assembly, and to examine whether SsnB disrupts mitotic spindle and 

microtubule dynamics. Also, we would like to examine whether the effect on 

cytoskeleton is reversible after removing SsnB treatment in vitro. Moreover, we will 

investigate the effect of SsnB on c-Fos and c-Jun gene expression by using the Pfaffl 

method (Pfaffl 2001) to compare experimental genes and to the housekeeping gene.  
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APPENDIX A- SUPPLEMENTARY DATA 

HUVEC medium: 

446 ml  K12 Medium 

50 ml  FBS 

50 mg  Heparin 

50 mg  Endothelial Mitogen 

4 ml  Non-Essential MEM Medium 

 

Berk’s Lysis Buffer  (BLB) pH 7.5: 

1.211 g Tris base 

8.766 g NaCl 

0.186 g KCl 

2.099 g NaF 

6.48 g  -glycerophosphate 

0.184 g Na3VO4 

5 ml   Triton X-100 

5 ml  Nonidet P-40 

Up to 1 L H2O 

  

Cytoskeleton Buffer with sucrose (CBS) 

1.07 g  MES pH 6.1 

5.14 g  KCl 

0.30 g  MgCl 

0.37g  EGTA 

Sucrose added fresh on the day of use of the buffer to final 0.32 M. 
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